Методы наименьших квадратов и наименьших модулей в научно-технических расчетах

127 for k = 1:2 n = 25; for i = 1:n ff(i) = c(1) *xx(i) ^3 + c(2) *xx(i) ^2 + c(3) *xx(i) + c(4); dy(i) = abs(yy(i) – ff(i)); if dy(i) = = 0 p(i) = 100; end p(i) = 1\dy(i); end t = 0; x1 = 0; x2 = 0; x3 = 0; x4 = 0; x5 = 0; x6 = 0; y1 = 0; yx1 = 0; yx2 = 0; yx3 = 0; n = 25; for i = 1:n x1 = x1 + xx(i) *p(i); x2 = x2 + xx(i) ^2*p(i); x3 = x3 + xx(i) ^3*p(i); x4 = x4 + xx(i) ^4*p(i); x5 = x5 + xx(i) ^5*p(i); x6 = x6 + xx(i) ^6*p(i); y1 = y1 + yy(i) *p(i); yx1 = yx1 + yy(i) *xx(i) *p(i); yx2 = yx2 + yy(i) *xx(i) ^2*p(i); yx3 = yx3 + yy(i) *xx(i) ^3*p(i);

RkJQdWJsaXNoZXIy MTY0OTYy