Механика, молекулярная физика и термодинамика, электричество и магнетизм

Проведем коаксиальную цилиндрическую поверхность радиуса Поток вектора напряженности через эту поверхность По теореме Гаусса Из последних двух выражений определяем напряженность поля, создаваемого равномерно заряженной нитью: (11.13) Напряженность поля, создаваемого, бесконечной равномерно заряженной плоскостью. Пусть плоскость имеет бесконечную протяженность и заряд на единицу площади равен σ. Из законов симметрии следует, что поле направлено всюду перпендикулярно плоскости, и если не существует никаких других внешних зарядов, то поля по обе стороны плоскости должны быть одинаковы. Ограничим часть заряженной плоскости воображаемым цилиндрическим ящиком, таким образом, чтобы ящик рассекался пополам и его образующие были перпендикулярны, а два основания, имеющие площадь S каждое, параллельны заряженной плоскости (рис 1.10). Суммарный поток вектора; напряженности равен вектору , умноженному на площадь S первого основания, плюс поток вектора через противоположное основание. Поток напряженности через боковую поверхность цилиндра равен нулю, т.к. линии напряженности их не пересекают. Таким образом, С другой стороны по теореме Гаусса Следовательно но тогда напряженность поля бесконечной равномерно заряженной плоскости будет равна Рис.11.11 Рис.11.12

RkJQdWJsaXNoZXIy MTY0OTYy