Механика, молекулярная физика и термодинамика, электричество и магнетизм

промежутка времени к нулю: (1.13) В проекциях на соответствующие координаты оси: или (1.14) 1.7. Криволинейное движение. Тангенциальное и нормальное ускорения При прямолинейном движении векторы скорости и ускорения совпадают с направлением траектории. Рассмотрим движение материальной точки по криволинейной плоской траектории. Вектор скорости в любой точке траектории направлен по касательной к ней. Допустим, что в т.М траектории скорость была , а в т.М 1 стала . При этом считаем, что промежуток времени при переходе точки на пути из М в М 1 настолько мал, что изменением ускорения по величине и направлению можно пренебречь. Для того, чтобы найти вектор изменения скорости , необходимо определить векторную разность: Для этого перенесем параллельно самому себе, совмещая его начало с точкой М. Разность двух векторов равна вектору, соединяющему их концы равна стороне АС МАС, построенного на векторах скоростей, как на сторонах. Разложим вектор на две составляющих АВ и АД, и обе соответственно через и . Таким образом вектор изменения скорости равен векторной сумме двух векторов: По определению: (1.15) Тангенциальное ускорение характеризует быстроту изменения скорости движения по численному значению и направлена по касательной к траектории. Следовательно

RkJQdWJsaXNoZXIy MTY0OTYy