Механика, молекулярная физика и термодинамика, электричество и магнетизм
Из сопоставления выражений (1.7) и (1.8) следует, что проекции скорости материальной точки на оси прямоугольной декартовой системы координат равны первым производным по времени от соответствующих координат точки: (1.9) Поэтому численное значение скорости: (1.10) Движение, при котором направление скорости материальной точки не изменяется, называется прямолинейным. Если численное значение мгновенной скорости точки остается во время движения неизменным, то такое движение называется равномерным. Если же за произвольные равные промежутки времени точка проходит пути разной длины, то численное значение ее мгновенной скорости с течением времени изменяется. Такое движение называют неравномерным. В этом случае часто пользуются скалярной величиной , называемой средней путевой скоростью неравномерного движения на данном участке траектории. Она равна численному значению скорости такого равномерного движения, при котором на прохождение пути затрачивается то же время , что и при заданном неравномерном движении: (1.11) Т.к. только в случае прямолинейного движения с неизменной по направлению скоростью, то в общем случае: . Закон сложения скоростей . Если материальная точка одновременно участвует в нескольких движениях, то результирующее перемещения в соответствии с законом независимости движения, равно векторной (геометрической) сумме элементарных перемещений, обусловленных каждым из этих движений в отдельности: В соответствии с определением (1.6): (1.12) Таким образом, скорость результирующего движения равна геометрической сумме скоростей всех движений, в которых участвует материальная точка, (это положение носит название закона сложения скоростей). 1.6. Ускорение Ускорение характеризует быстроту изменения скорости, т.е. изменение величины скорости за единицу времени. Вектор среднего ускорения . Отношение приращения скорости к промежутку времени , в течение которого произошло это приращение, выражает среднее ускорение: Вектор, среднего ускорения совпадает по направлению с вектором . Ускорение, или мгновенное ускорение равно пределу среднего ускорения при стремлении
Made with FlippingBook
RkJQdWJsaXNoZXIy MTY0OTYy