Механика, молекулярная физика и термодинамика, электричество и магнетизм
или, учитывая, что для идеального газа Разделим обе части этого уравнения на где безразмерная величина, называемая постоянной адиабаты. Пренебрегая зависимостью от температуры, можно считать, что для данного газа . Интегрируя последнее уравнение получим т.е. (7.21) Это выражение называют уравнением Пуассона. Соотношение между давлением и температурой, а также между объемом и температурой идеального газа в адиабатическом процессе имеют вид Эти соотношения легко получить из (7.21), пользуясь уравнением Менделеева - Клапейрона. Линию, изображающую адиабатический процесс в диаграмме состояния, называют адиабатой. На рис. 7.7 сплошной линией показан вид адиабаты в (P-V) диаграмме. Для сравнения в том же рисунке пунктирной линией изображена изотерма, соответствующая температуре газа в начальном состоянии 1. Так как для любого идеального газа показатель адиабаты , то в (P-V) диаграмме адиабата всегда идет круче, чем изотерма. Объясняется это тем, что при адиабатическом сжатии увеличение давления обусловлено не только уменьшением объема газа, как при изотермическом сжатии, то также еще и увеличения температуры. При адиабатическом расширении температура газа уменьшается, поэтому давление газа падает быстрее, чем при изотермическом расширении. Работу, совершаемую газом в адиабатическом процессе, найдем интегрируя выражение Полная работа Рис.7.7
Made with FlippingBook
RkJQdWJsaXNoZXIy MTY0OTYy